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A B S T R A C T   

The fast development of machine learning and artificial intelligence has led to a great improvement of the smart 
tourism recommendation system, however many problems associated with the choice of transport modes in city 
tourism have yet to be solved. This research attempts to address this issue by proposing a model of customized 
day itineraries with consideration of transport mode choice. With improved particle swarm optimization and 
differential evolution algorithm, a nondominated sorting heuristic approach was devised. A case study was 
carried out in Chengdu, China to examine the performance of our approach. The results show that compared with 
extant methods, our approach achieves better performance. In addition, our approach can create more sensible, 
multifarious, and customized itineraries than previous methods. Tourism organizations and mobile map app 
providers could integrate our proposed model into their existing smart service systems, as part of their e-business 
or digital strategy for enhancing tourist experience.   

1. Introduction 

It is well recognized in the tourism literature that transport system is 
essential for tourism development (Kaul, 1985; Prideaux, 2000; Yin, Lin, 
& Prideaux, 2019). Accessibility or transport infrastructure is one of the 
crucial destination factors that drive tourist satisfaction and loyalty (Chi 
& Qu, 2008; Forgas-Coll, Palau-Saumell, S�anchez-García, & 
Callarisa-Fiol, 2012; Lin, He, & Vlachos Ilias, 2015; Lin, Vlachos, & 
Ollier, 2018). To access their points of interest within a city destination, 
tourists may need to navigate through a complex system of different 
modes of transport, such as metro, light railway, and bus within a city 
destination (Albalate & Bel, 2010). Despite the vital role of transport 
system for urban tourism, which substantially contributes to a city’s 
economy (Ashworth & Page, 2011), many metropolitan destinations 
around the world have experienced various problems such as over
crowded transport systems and traffic congestions (Gronau, 2017), 
making it difficult for urban tourists to fully enjoy what the city desti
nation has to offer. Both tourism researchers and destination managers 
are increasingly turning to the latest digital technologies such as the 
internet of things, big data, machine learning, and artificial intelligence 
to help enhance tourist experiences (Gretzel, 2011; Gretzel, Sigala, 
Xiang, & Koo, 2015; Tussyadiah, 2020). Thanks to the advances in these 

digital technologies, smart tourism applications such as tour recom
mendation systems have made great improvements in recent years 
(Kotiloglu, Lappas, Pelechrinis, & Repoussis, 2017; Li, Hu, Huang, & 
Duan, 2017; Wang, Li, Zhen, & Zhang, 2016). 

There are various challenges of designing a tour itinerary in the tour 
recommendation system, ranging from data sources, data mining 
methods, tour recommendation algorithms, applications, and perfor
mance evaluation (Lim, Chan, Karunasekera, & Leckie, 2019). One of 
the critical elements in a tourism recommendation system is the tourist 
trip design problem (TTDP) that plans routes to maximize tourist 
engagement while considering various constraints (Vansteenwegen & 
Van Oudheusden, 2007). A TTDP commonly has conflicting objectives, 
leading to the difficulty of selecting the best option (Rodríguez, Molina, 
P�erez, & Caballero, 2012). Unlike general studies on TTDP, designing 
tour routes for city tourists requires integrating various transport modes, 
which is an acknowledged functionality (Garcia, Vansteenwegen, 
Arbelaitz, Souffriau, & Linaza, 2013). The complex transportation sys
tems (Abbaspour & Samadzadegan, 2011), traffic congestions and 
tourists’ personalized and diversified requirements for transport modes 
make the TTDP even more complicated (Garcia et al., 2013; Gavalas 
et al., 2015a; Gavalas, et al., 2015b). There are at least three key 
modeling challenges that have not been adequately addressed in the 
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literature. First, different transport modes have implications for the 
amount of travel time required. Second, traffic congestion has different 
impacts on travel time depending on the transport mode used; thus, the 
degree of uncertainty about travel time is different across different 
transport modes. Third, tourists have different attitudes toward uncer
tainty or risk. 

This study therefore aims to address the above three key challenges 
by proposing a model of customized day itineraries for city tourists 
while considering transport mode choice (TTDP-TMC). In particular, a 
couple of conflicting objectives (utility and risk) and many constraints 
associated with attractions, tourists, and urban transportation networks 
are considered. The Pareto optimality Definition is adopted and a non
dominated sorting heuristic approach (NSHA) is designed with 
improved particle swarm optimization (PSO) and a differential evolu
tion algorithm (DEA). This approach is distinct from extant methods in 
four major aspects. (1) Solutions are coded using a triple-layer, variable- 
length asymmetric chromosome. (2) The designed method optimizes 
solutions that involve continuous and discrete variables merging 
improved PSO and DEA. (3) A random simulation-based method 
combining the Pareto optimality definition is proposed to handle time- 
dependent stochastic variables (TDSVs). (4) A hybrid evolution struc
ture is designed to improve evolutionary efficiency. A case study in 
Chengdu, an old but modernized city in the Sichuan Province of China, 
was conducted to confirm this approach’s validity. 

This study makes a major methodological contribution to the tourism 
recommendation systems literature, which also has valuable practical 
implications. In the methodological front, we develop a novel model for 
tourist trip design considering the complex transport system in a 
metropolitan city context. On the managerial front, our model provides 
tourism organizations with insights into improving their recommenda
tion services that are practical and useful for their customers. The rest of 
this study is structured as follows. Related literature on TTDP is briefly 
reviewed in Section 2. The mathematical TTDP-TMC model for city 
tourists is described in Section 3, and our approach is introduced in 
Section 4. The case study that is used to validate the NSHA performance 
is discussed in Section 5. Finally, Section 6 concludes and suggests 
further research directions. 

2. Literature review 

2.1. Transport and tourist decision making 

Organizing an excursion trip within a city destination is a complex 
task for the tourists (Kotiloglu et al., 2017; Pellegrini & Scagnolari, 
2019). They have to make decisions on the places to visit and activities 
based on their location of accommodation, available means of transport, 
duration of stay, and monetary budget, which are the major constraints 
they have to take into consideration. Decisions on places to visit 
(movements) and how to access to the places of interest (transport 
choice) are inter-related (Le-Kl€ahn, Roosen, Gerike, & Hall, 2015; 
Masiero & Zoltan, 2013). On the one hand, tourist decisions on their 
activities and places to visit are influenced by the transport system 
(Prideaux, 2000); and on the other hand, tourist characteristics, moti
vations, and trip profile influence their choice of transport mode (Hyde 
& Laesser, 2009), and the resultant tourist spatial-temporal movements 
could then influence the city’s transport planning decisions (Lew & 
McKercher, 2006). Previous studies have shown that both the places to 
be visited and the transport mode used are determined by many factors 
such as tourist origin (Debbage, 1991), cultural background (Dejbakhsh, 
Arrowsmith, & Jackson, 2011), personality (Plog, 2002), special in
terests (Fennell, 1996), familiarity with the destination (McKercher, 
Shoval, Ng, & Birenboim, 2012), length of stay (Xia et al., 2010), and 
motivational variables (Masiero & Zoltan, 2013). 

In recent years, recommendation systems have been widely used in e- 
business context, where online venders such as Amazon and Netflix 
provide their customers with the information of products or services that 

closely match their individual preferences (Lee & Hosanagar, 2019). 
When organizing a day trip within a city destination, some tourists may 
turn to travel agencies, hotels and visitor centers for advice and many 
others tend to search online social media for information and in
spirations. However, tourists could be information over-loaded and 
reach a suboptimal trip plan (Zheng, Ji, Lin, Wang, & Yu, 2020). 
Technology-savvy tourists now turn to smart tourism applications for 
trip planning (Kotiloglu et al., 2017). Using sophisticated algorithms 
based on data collected from various sources, a smart tourism recom
mendation system helps tourists to maximize their experience efficiently 
and cost-effectively (Lim et al., 2019; Vansteenwegen & Van Oudheus
den, 2007; Wong & McKercher, 2012). 

2.2. Tourist trip design problem 

Previous studies have contributed to the improvement of customized 
tourism products, however, transport mode choice has received limited 
attention despite being one of the most appreciated functionalities 
(Albalate & Bel, 2010; Garcia et al., 2013). TTDP for city tourists are 
more complex because the metropolitan transit networks are compli
cated (Garcia et al., 2013; Gavalas et al., 2015a; Gavalas, et al., 2015b). 
In addition, tourists may have various requirements or preferences for 
transport modes: For instance, some tourists may be flexible with 
transport modes, whereas others might specify all or some of the 
transport modes for their trip. The existing methods cannot be directly 
used to solve the TTDP with consideration of the transport mode choice 
within a city. 

There are three main problems associated with the TTDP for city 
tourists that yet to be solved. First, different transport modes inevitably 
result in varying travel time, which in turn affects attraction selection, 
sequencing, and time allocation. For example, riding a taxi tends to 
consume less travel time than riding the subway, thus allowing tourists 
to spend more time in tourist attractions or visit more attractions to 
achieve greater utility. Considering transport mode choice in TTDP not 
only adds a decision variable but also creates a subversive impact on the 
overall optimization structure. This is because attraction selection, 
sequencing, time allocation, and transport mode are factors that affect 
and restrict each other. 

Second, traffic congestion has become a daily phenomenon in cities, 
resulting in uncertain travel times between attractions (Verbeeck, 
Vansteenwegen, & Aghezzaf, 2016). Realizing this issue, travel time has 
been modeled as a time-dependent variable that changes based on de
parture time (Abbaspour & Samadzadegan, 2011; Garcia et al., 2013; 
Gavalas et al., 2015a). Apart from being time-dependent, travel time is 
stochastic due to many variables (e.g., weather, congestion, and acci
dents), making the accurate estimation of arrival time at the destination 
challenging (Verbeeck et al., 2016). Research on TTDP in an urban 
setting thus involves a stochastic environment that depends on time. 
Liao and Zheng (2018) first designed customized day itineraries in such 
an environment. The problem raised in the present study is more 
complicated than the TTDP proposed by Liao and Zheng (2018) owing to 
the various effects of traffic congestion on different transport modes. 
Consequently, travel time is heavily dependent on transport mode 
choice. For example, compared with taxis, subway or shared bicycles 
have relatively lower uncertainty of travel time. 

Third, due to this effect of transport mode choices on travel time 
uncertainty, designing personalized tour routes for city tourists must 
consider not only the travel utility but also the risk. Measured in prob
ability terms, risk is the conservative estimate of completing a trip 
within the allocated time (Liao & Zheng, 2018). Depending on tourists’ 
attitude toward risk, they may prefer a route with greater utility despite 
the higher probability of failure to finish a trip within the allocated time, 
or a more leisurely trip with lower utility (Lau, Yeoh, Varakantham, 
Nguyen, & Chen, 2012). This consideration changes our TTDP into a 
multi-objective optimization problem (MOP), that is, two potentially 
conflicting objectives (utility and risk) should provide a beneficial 
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trade-off according to the tourist characteristics (e.g., preferences and 
attitude toward risk). 

In this study, we propose a TTDP-TMC that optimizes the interactive 
decision variables, including attraction selection, sequencing, time 
allocation, and transport mode choice. In addition, the involvement of 
discrete and continuous variables increases the difficulty of optimization 
(Liao & Zheng, 2018; Zheng et al., 2020; Zheng & Liao, 2019; Zheng, 
Liao, & Qin, 2017). Our TTDP-TMC is in a stochastic environment 
dependent on time with many variables (TDSVs). As a decision variable, 
transport mode choice affects the environment uncertainty. Finally, 
considering the differences in tourists’ attitudes toward risk, our 
TTDP-TMC requires a beneficial trade-off between utility and the risk. A 
single-objective optimization problem then becomes a multi-objective 
optimization problem (MOP). 

3. Methodology 

A mathematical model is presented in this section to describe our 
TTDP-TMC. Table 1 lists the mathematical variables and their defini
tions. The first and second subsections discuss the objectives and con
straints of the mathematical model, respectively. 

3.1. Model objectives 

This study intends to come up with personalized day tour routes, 
represented in a mathematical model of a multiple-objective TTDP set in 
a time-dependent stochastic environment. To be specific, route spatial- 
temporal structures and transport mode choice are optimized. In addi
tion, an advantageous trade-off is reached between utility and risk 
within an allocated time (Tmax). Popular vertices may have repeat visits 
(Tsai & Chung, 2012), so we used ni to represent the number of discrete 
visits to vi. The entire trip is then divided into M stages with N as the 
number of vertices in the destination, as expressed in Eq. (3.1). 

M¼
XN

i¼1
ni (3.1) 

At each stage, the utility gained depends on the visited vertex (Λj). 
Specifically, the utility depends on the personal preference (pi) of the 
tourist for Λj and the actual time spent at Λj (Zheng et al., 2017). Rather 
than constant, the utility associated with each vertex is a diminishing 
time function, because marginal subjective sensations (MSi(t)) typically 
decreases with time spent at the same vertex (Liao & Zheng, 2018; Zheng 
et al., 2017). On the basis of these considerations, Eq. (3.2) calculates 
the utility gained at the jth stage under the assumption that no utility is 
gained while in transit and during waiting times. Eq. (3.3) follows and 
maximizes the total utility gained from the entire trip, which is the first 
objective of the TTDP-TMC. 

~uj ¼

Z ~t
e
j

~t
s
j

(
XN

i¼1

�
MSiðtÞ ⋅ pi⋅xij

�
)

dt (3.2)  

U¼
XM

j¼1
~uj (3.3) 

In Eq. (3.2), MSi(t) is obtained from vi at moment t, a non-negative 
diminishing time function. xij is a 0–1 discrete variable, that is, if vi is 
visited at the jth stage, then set xij ¼ 1; otherwise, xij ¼ 0. At vertex Λj, ~t

a
j 

is the time of arrival and ~ts
j is the actual start time of the visit. Of note, in 

numerous instances, ~ta
j is not the same as~ts

j , due to waiting or other ac
tivities required at a given vertex. Thus, Eq. (3.4) computes ~ts

j as follows: 

~ts
j ¼max

h
~ta

j ; t
o
i

i
(3.4) 

Calculating ~ta
j is more complicated than ~ts

j , because ~tk
qðΛj;

Λjþ1Þdepends not only on the distance between Λj and Λjþ1, but also on 
the transport mode choice. In addition, as TDSVs, ~tk

qðΛj; Λjþ1Þfollow 
varied distribution functions in different timeslots. Liao and Zheng 
(2018) present the detailed calculation of ~ta

j . 
~ta

j , ~tsj and ~tej are TDSVs, whereas ~uj and ~U falls under TDSVs. The direct 
evaluation of their performance cannot be attained, so these stochastic 
variables require conversion into deterministic variables. Conversion 
can be achieved through any of three main models, namely, probability 
maximization model (P-model), expectation optimization model (E- 
model), and variance minimization model (V-model) (Liao & Zheng, 
2018). By using an expected value, the E-model can efficiently manage 
the stochastic objective functions. On the basis of the E-model, the 
objective function in Eq. (3.3) can then be used in Eq. (3.5), where E

�
�~uj
�
�

is the expected utility at the jth stage. 

f1MaxU¼
XM

j¼1
E
�
�~uj
�
� (3.5) 

Apart from utility, the route risk should be considered. Measured in 
probability terms, risk is the conservative estimate of completing the 
tour within the allocated time. Tour route design should minimize a 
certain perception of risk. The P-model can effectively consider the 
user’s risk profile and, thus, is employed to minimize the probability of 
failing to complete the tour within the allocated time. In Eq. (3.6), ~ta

M 
reflects the end of the trip as the time of arrival at ΛM, and ChfA� Bg
means the confidence level meets condition A � B. 

f2MinR¼ 1 � Ch
�
~ta

M � τþTmax
�

(3.6)  

3.2. Model constraints 

Designing personalized tour routes should address two types of 
constraints, namely, customized and permanent technical constraints. 

Table 1 
Mathematical notations and descriptions.  

Variable Description 

V Urban destination vertices 
VA Urban destination attractions 
VI Starting locations 
VF Final arrival locations 
N Number of vertices 
τ Planned start time of the trip 
ni Discrete visits to vertex vi 

M Total stages, that is, the sum of ni, M ¼
P

ni, i ¼ 1, 2, …, N 
ti Average time spent by tourists at vi 

Λj Vertex visited at jth stage, j ¼ 1, 2, …, M 
Tmax Budgeted time allotted to the tourist 
½toi ; tci � vi Time window 
TSq qth timeslot, q ¼ 1, 2, …, Q 
EqðΛj;

Λjþ1Þ

Transport modes for TSq between Λj and Λjþ1 

pi Tourist preference value for vi, pi2[0, 1] 
β Tourist attitude toward risk, β2[0, 1] 
~tkqðΛj;Λjþ1Þ Travel time required between vertices (Λj, Λjþ1) for TSq using kth 

transport mode 
~taj  Time of arrival at vertex Λj 

~tsj  Start time of actual visit at vertex Λj 

~tej  Time of departure from vertex Λj 

~uj  Utility gained at jth stage 
~U  Total utility gained from the entire trip 

dj Duration of time spent at the visited vertex at jth stage 
xij If vi is visited at jth stage, then set xij ¼ 1; otherwise, xij ¼ 0 
ykðΛj;

Λjþ1Þ

If kth transport mode is chosen from Λj to Λjþ1, then set 1; otherwise, 0  
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Permanent technical constraints ensure the validity of routes as well as 
their practical meaning, whereas the customized constraints restrict a 
tourist’s specific requirements to be incorporated into the model 
(Rodríguez et al., 2012). 

In a tour, the first stage involves the tourist departing from a starting 
location, and the last stage involves the final arrival at an end destina
tion, as given in Eq. (3.7). From the second to the M-1st stage, Eq. (3.8) 
guarantees that only one attraction is visited. In these equations, VI, VF, 
and VA represent the starting locations, final arrival locations, and 
tourist attractions, respectively. Similarly, Eq. (3.9) ensures that each 
stage involves taking only one transport mode. 
X

vi2VI

xi1 ¼
X

vj2VF

xjM ¼1 (3.7)  

X

vi2VA

xij ¼1; j¼ 2; 3;⋯;M � 1 (3.8)  

X

k2BqðΛj ;Λjþ1Þ

yk� Λj;Λjþ1
�
¼~ta

jþ1; 8Λj;Λjþ1 2V; j¼ 1; 2;⋯;M � 1 (3.9) 

Time and path connectivity are obtained in Eqs. (3.10) and (3).11), 
where zij is a 0–1 discrete variable. If vi and then vj are visited, then zij ¼

1; 0, otherwise. 

~te
j þ~tk

j

�
Λj;Λjþ1

�
¼~ta

jþ1; ð8j¼ 1; 2;⋯;M � 1Þ (3.10)  

X

vi2VI[VA

Zij¼
X

vi2VA[VF

Zjk;8vj 2 VA; vi 6¼ vj;vj 6¼ vk; (3.11) 

In addition, personalized constraints require incorporation into the 
model. Before starting their trips, tourists often create a list of “must- 
visit” or “must-avoid” vertices and have a time budget. Tourists may feel 
hurried if time constraints are disregarded. If the trip includes unwanted 
vertices or excludes favorite ones, then the tourism experience can be 
clearly affected (Tsai & Chung, 2012). To prevent these scenarios, Eqs. 
(3.12) and (3).13) ensure that compulsory vertices SC are included in the 
trip and that the vertices to be avoided SA are excluded, respectively. 

XM

j¼1
xij � 1; if vi 2 SC (3.12)  

XM

j¼1
xij ¼ 0; if vi 2 SA (3.13)  

4. Solution algorithm 

Our TTDP-TMC is novel and challenging, because it is a generaliza
tion of the OP, but much more complex. Spatial-temporal routes and 
transport mode choice require optimization, and an advantageous trade- 
off must be gained between utility and risk in a time-dependent sto
chastic environment. TDSVs also adhere to varying types of distribution 
functions. Three steps were taken to address these challenges. (1) the 
Pareto optimality was adopted to effectively address MOPs (Chen, Zhou, 
& Xiang, 2017). (2) A random simulation-based method was employed 
to manage TDSVs. Finally, (3) solutions with continuous and discrete 
variables were optimized merging improved PSO and DEA. The overall 
NSHA framework is illustrated in Fig. 1, which comprises initialization, 
random simulation, and hybrid evolution. 

Initialization involves route coding with a triple-layer, variable- 
length asymmetric chromosome, and an initial route set (IRS) is con
structed using an improved greedy algorithm. In a random simulation, 
random samples are generated to determine the feasible solutions, on 
the basis of which a Pareto solution set is produced. Finally, the feasible 
solutions follow a hybrid evolution strategy that merges the improved 
PSO and DEA. Upon reaching the maximum number of iterations (G), a 
critical parameter that needs to be determined on the basis of the 

convergent situation, the algorithm stops. The end of each iteration 
generates a new Pareto-optimal set (POS), and the last iteration POS is 
the output. 

4.1. Initialization 

The majority of evolution algorithms require advanced determina
tion of the solution dimensions (Zheng et al., 2017), which cannot be 
applied to the present problem due to possible variations in the vertices 
that a tourist visits. To code the route, Zheng et al. (2017) designed a 
double-layer, variable-length chromosome that involves the spatial 
structure of the route (vertex selection and sequencing) and the time 
spent at each chosen vertex. However, this study optimizes the 
spatial-temporal structure and transport mode of the route. A 
triple-layer, variable-length, asymmetric chromosome is introduced to 
code the routes. The upper layer is the route’s spatial structure, the 
middle layer denotes the transport modes selected among vertices, and 
the lower layer indicates the time spent at a certain vertex. This route 
coding is illustrated with an example in Fig. 2, which depicts that the 
tourist starts the trip at v5, then successively visits v2, v1, v7, v8, v1, and v9, 
where the trip ends. At these vertices (v2, v1, v7, v8, and v1), the values of 
time spent are 10, 15, 8, 20, and 30 min. The chosen transport modes 
between vertices are 1 (taxi), 1, 2 (subway), 3 (bus), 2, and 3, 
successively. 

The IRS quality strongly influences the model performance. In 

Fig. 1. Methodological framework.  
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traditional route optimization methods, the IRS is constructed using the 
random or the greedy approach. In this study, the IRS is generated 
through a greedy algorithm improved by Zheng et al. (2017) to gain an 
advantageous trade-off between quality and diversity. 

4.2. Random simulation 

In this step, a POS is generated. However, generating a fixed feasible 
region is impossible because our TTDP-TMC is set in a time-dependent 
stochastic environment and involves TDSVs. Therefore, a set of 
random samples for the TDSVs must first be generated, and then the 
corresponding solutions are identified by adopting the Pareto optimality 
Definition. 

4.2.1. Generating random samples 
Travel times (~tkqðΛj; Λjþ1Þ) between vertices (vi, vj) using the kth 

transport mode for TSq are TDSVs, and they adhere to different distri
bution functions depending on timeslots. Employing the distribution 
fitting tool in the MATLAB software package, considerable historical 
data are used to fit these distribution functions. On the basis of which, 
~tk

qðΛj;Λjþ1Þ of each timeslot are generated for the fth random sample 
(refer to Eq. (4.1)). The travel times between vertices (vi, vj) by different 
transport modes can be denoted as an array, as shown in Eq. (4.2). Af
terward, an F�Q matrix (Matrix (M[t]) is constructed, as expressed in 
Eq. (4.3), where F is the number of random samples and Q is that of 
timeslots. F is highly and positively correlated with the algorithm’s 
performance but highly and negatively correlated with its efficiency. 
Determining the best value for F is important to balance performance 
and efficiency. 

M
h
tk;f
q

i
¼

2

6
6
6
6
6
6
4

tk;f
q ðv1;v1Þ

k;f
q ðv1;v2Þ ⋯ k;f

q ðv1;vNÞ

k;f
q ðv2;v1Þ

k;f
q ðv2;v2Þ ⋯ k;f

q ðv2;vNÞ

⋮ ⋮ ⋱ ⋮
k;f
q ðvN;v1Þ

k;f
q ðvN;v2Þ ⋯ k;f

q ðvN;vNÞ

3

7
7
7
7
7
7
5

(4.1)  

A
h
tf
q

i
¼
h
M
h
t1;f
q

i
M
h
t2;f
q

i
⋯M

h
tK;f
q

ii
(4.2)  

MatrixðM½t�Þ ¼

2

6
6
6
6
6
4

A
�
t1
1

�
A
�
t1
2

�
⋯ A

�
t1
1

�

A
�
t2
1

�
A
�
t2
2

�
⋯ A

h
t2
Q

i

⋮ ⋮ ⋱ ⋮
A
�
tF
1

�
A
�
tF
2

�
⋯ A

h
tF
Q

i

3

7
7
7
7
7
5

(4.3)  

4.2.2. Updating the Pareto solution set 
F random samples are generated according to the distribution func

tions. Then, each solution’s objective values (utility and risk) are 
calculated for each random sample based on Eqs. (3.5) and (3.6). The 
solution utility for f random samples can be calculated according to Eq. 
(4.4), whereas the total solution utility equals the average of all random 

samples’ utilities, as shown in Eq. (4.5). To calculate the solution risk, a 
0–1 discrete variable αf is defined to determine whether the trip is 
completed within the time allocation, as shown in Eq. (4.6), where ta;f

M 
denotes the completion time of the trip. Finally, the solution risk can be 
calculated following Eq. (4.7). 

uf
j ¼

Z te;fj

ts;fj

(
XN

i¼1

�
MSiðtÞ ⋅ pi⋅xij

�
)

dt; ð8f ¼ 1; 2;⋯;FÞ (4.4)  

U¼
1
F

XF

f¼1

XM

j¼1
uf

j (4.5)  

αf ¼

(
1; tf ;a

M � τ þ Tmax

0; tf ;a
M > τ þ Tmax

(4.6)  

R¼
1
F
XF

f¼1
αf (4.7)  

With a number of conflicting objectives, MOPs have no single optimi
zation solution for all the objectives. For our TTDP-TMC, a single route 
cannot maximize utility and minimize risk at the same time. To solve 
this, we balance these two objectives by searching for a set of routes that 
is based on Pareto theory. The following Pareto-related definitions are 
defined with reference to Zheng and Liao (2019). 

Definition 1. (Pareto-optimal route): The Pareto-optimal route 
(denoted as PR) refers to a route, around which there is no way of 
improving any objective without degrading at least one other objective. 
All PRs are included in the Pareto-optimal set (denoted as POS). 

Definition 2. (Pareto-optimal front): Every objective function value 
corresponding to the PRs in POS is included in the Pareto-optimal front 
(denoted as PF). 

Each of the iterations generates a set of routes. The generated set of 
routes is denoted as S(g) at the gth iteration, and the POS of the previous 
iteration is POS(g� 1). The POS updating is illustrated in Fig. 3 using the 
pseudo-code definitions. Given POS(g� 1), S(g), and population size (P), 
the output is POS(g) (Fig. 3, lines 1–2). POS(g) is initially an empty set, 
and its number of PRs is parameter n (Fig. 3, lines 3–4). The entire 
updating process is depicted in Fig. 3 (lines 5–22). First, S(g) and POS 
(g� 1) are combined to derive a candidate route set (CRS). If the number 
of PRs in CRS is less than P, then the following operations need 
repeating: PRs are screened from CRS according to Definition 1 to 
generate a new set (SN), and m is the number of PRs in SN (lines 7–8 in 
Fig. 3). If the number of PRs in POS(g) and SN is less than P (n þ m � P), 
then all PRs in SN are inserted into POS(g) and removed from CRS 
accordingly. The CRS, POS(g), and n are then updated (lines 9–12 in 
Fig. 3). If the number of PRs in POS(g) and SN exceeds P (n þm > P), then 
the distance between the risk of each PRi (f2) in SN and the tourist’s 
attitude toward risk (β) is obtained by Eq. (4.8). The PRs with the 
shortest distances are selected and inserted into POS(g) until it equals P 
or all PRs in SN have been moved to POS(g) (lines 13–21 in Fig. 3). The 
process stops when the number of PRs in POS(g) equals P (n ¼ P). The 
output of random simulation is a POS, which serves as input for hybrid 
evolution. 

π¼ jf2 � βj (4.8)  

4.3. Hybrid evolution 

4.3.1. Improved particle swarm optimization 
In this step, the evolution aims to evaluate the Pareto solutions in 

POS and generate routes with a greater trade-off between utility and 
risk. As previously discussed, the solution is coded as a triple-layer 
chromosome that shows, from top to bottom, the spatial structure of 

Fig. 2. Example of route coding.  
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the route, choice of transport mode, and the time spent at corresponding 
vertices. The first two are discrete decision variables, whereas the last is 
continuous. With such decision variables, Zheng and Liao (2019) opti
mized multi-objective solutions by merging ant colony optimization 
(ACO) and DEA. Apart from the above study, very limited research 
discusses the optimization of multi-objective solutions with continuous 
and discrete decision variables. Although ACO possesses good robust
ness and searching ability, it exhibits several flaws, such as slow 
convergence that is easily trapped into the local optimum (Dorigo & 
Blum, 2005). Although combining ACO and DEA offers a different 
perspective, this method cannot solve multiple TDSVs efficiently and, 
thus, is not applicable for the time-dependent stochastic TTDP. We 
simulate a set of random samples that can increase computation 
complexity and result in poor algorithm efficiency to effectively handle 
TDSVs. For instance, computation complexity increases to approxi
mately F times its value without TDSVs if F is the number of random 
samples. The efficiency of evolutionary operators considerably affects 
the algorithm performance for TTDP-TMC. 

By contrast, PSO, which was originally attributed to Kennedy and 
Eberhart (1995), is ideally situated for the present problem due to its 
higher search efficiency (Bonyadi & Michalewicz, 2017; Poli, 2008). The 
PSO algorithm employs a population (swarm) of possible solutions 
(particles), which moves with the guidance of their own and the swarm’s 
best-known positions in the search-space. Thus, the discovery of 
improved positions then adds to guiding the swarm movements. These 
evolution processes are illustrated in Eqs. (4.9) and (4.10), where xt

j and 
xtþ1

j represent the jth particle’s current solution and next iteration so
lution, respectively. vtþ1

j is the movement velocity to transition from xt
j 

to xtþ1
j , which can be calculated according to Eq. (4.9), where Pbesttj 

indicates the jth particle’s best known solution, whereas Gbestt denotes 
the entire swarm’s best-known solution. ω means inertia weight, 

whereas σ1 and σ2 are learning factors that control the particles’ learning 
intensity to individual optimum and global optimum, respectively. 

xtþ1
j ¼ xt

j þ vtþ1
j (4.9)  

vtþ1
j ¼ωvt

j þ σ1

�
Pbestt

j � xt
j

�
þ σ2

�
Gbestt � xt

j

�
(4.10) 

Although PSO is well-known for superior search efficiency, its de
fects are similarly widely realized to include precocious convergence 
and poor local optimization (Bonyadi & Michalewicz, 2017; Poli, 2008). 
By contrast, the genetic algorithm (GA) is known to be robust. It does not 
need auxiliary knowledge, and it presents many advantages in solution 
methodology and optimization performance. Thus, this algorithm offers 
wide applicability to optimization problems that are discrete (Osman, 
Abo-Sinna, & Mousa, 2005). Essentially, PSO learning operators can be 
regarded as the evolutionary strategies of GA, in which Pbestt

j and Gbestt 

are the “parents”. Therefore, in optimizing the discrete variables, our 
approach designs the improved PSO by combining the GA optimization 
concept. The improved PSO is illustrated with a specific example in 
Fig. 4. First, the current solution of the jth particle (xt

j)Pbestt
j , and Gbestt 

are determined in Fig. 4(a), and their upper two chromosome layers are 
used as parents. Second, a two-point mutation converts xt

j to M½xt
j �, while 

a single-point crossover is implemented between xt
j and Pbestt

j and be
tween xt

j and Gbestt to generate C½xt
j ; Pbestt

j � and C½xt
j ;Gbestt

j �, as shown in 
Fig. 4(b)–(c). Finally, the new solution (named the offspring) is gener
ated using a three-segment combination. (1) Two points in M½xt

j � are 
randomly selected to divide into three segments, and similar operations 
are conducted in C½xt

j ;Pbestt
j � and C½xt

j ;Gbestt
j �, as shown in Fig. 4(c). (2) 

The offspring (xtþ1
j ) is determined as concatenation of parts from M½xt

j �, 
C½xt

j ;Pbestt
j �, and C½xt

j ;Gbestt
j �, as shown in Fig. 4(d). 

Upon the optimization of the route’s spatial structure and transport 
mode choice, another task must be completed to obtain the time 
consumed at the corresponding vertices, which is a continuous decision 
variable. This task optimizes the evolution results of the improved PSO 
by introducing a DEA, which then relies on crossover, mutation, and 
selection (Zheng et al., 2017). 

4.3.2. Hybrid evolution structure 
In addition to the improved evolutionary operators, the hybrid 

evolution structure proposed by Liao and Zheng (2018) is adopted to 
further increase evolutionary efficiency. In the hybrid evolution struc
ture, the solution evolution can be considered predatory global and local 
searches for solution space. The global search explores new local solu
tion space, whereas the local search obtains enhanced quality of results 
(Parouha & Das, 2016). 

In accordance with the TTDP-TMC, the TTDP evolution aims to 
generate routes with improved performance. Route performance is 
associated with the route spatial structures, transport mode choice, and 
time consumed at each visited vertex. Performance is considerably 
affected by the first two above-mentioned factors compared with the 
last, and optimization of time allocation can be considered as an addi
tional step. From this perspective, the evolution of route spatial struc
ture and transport mode choice can serve as a global search, whereas 
that of time allocation can serve as a local search. With different opti
mization objectives, these global and local searches lead to varied 
methods. Spatial structure and transport mode choice are discrete de
cision variables, so for their evolution, we combine a high learning in
tensity with individual optimum (σ1), a low learning intensity with 
global optimum (σ2), and a low-frequency DEA. As time allocation is a 
continuous decision variable, we combine a low σ1, a high σ2, and high- 
frequency DEA for its evolution. The procedure involved in hybrid 
evolution is shown in Fig. 5. 

This procedure emphasizes which search type to adopt. In MOPs, the 
approach performance is considerably affected by the diversity of so
lutions in POS (δ), of which high diversity allows for wider search space 

Fig. 3. Updating of Pareto-optimal set.  
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for the next iteration. Therefore, the type of search is determined based 
on the diversity of solutions in POS. If the δ exceeds threshold ξ, then a 
significantly diverse POS, and even a better one, is available near the 
solution space (Chen, Lin, Zeng, Zhang, & Si, 2015). A local search is 

more beneficial because a global search may inefficiently seek local 
solution spaces one after the other (called “jump around”), resulting in 
poor search performance and convergence. The result likely falls into a 
local optimum if a significantly diverse POS is nonexistent (δ < ξ). Here, 
a global search is more beneficial as “jumping around” local solution 
spaces increases the possibility of coming across a POS that is better 
(Marinakis, Migdalas, & Sifaleras, 2017). 

In this step, the δ calculation is clearly one of the most important 
tasks. The diversity of multi-objective solutions can be measured by 
variance-based methods or entropy-based methods (Yang, Li, Cai, & 
Guan, 2014). However, these methods cannot evaluate route diversity, 
which involves discrete and continuous variables. Therefore, the tra
jectory similarity measuring method proposed by Zheng et al. (2019) is 
adopted. The method involves earth mover’s distance (EMD) and dy
namic time warping (DTW), which perform well on in terms of noise 
resistance and measurement accuracy. The diversity of solutions in POS 
can be obtained using Eq. (4.11), where DisSimðPSi;PSjÞ represents the 
dissimilarity between solutions PSi and PSj (see Zheng et al. (2019)), and 
P denotes the number of solutions in POS. 

σ¼
2�

PP� 1

I¼1

PP

j¼iþ1
DisSim

�
PSi;PSj

�

P� ðP � 1Þ
; 8PSi;PSj 2 POS (4.11)  

5. Performance evaluation 

5.1. Area of the case study 

Chengdu, one of the first national historical and cultural cities in 
China, was selected for the case study. It has a reputation as an estab
lished and well-developed urban destination. With its unique, myste
rious, and enrichment tourism resources (e.g., natural beauty, historical 
culture, and gastronomy), Chengdu received over 210 million tourists in 
2017, an increase of 10.66% from 2016. Of this number, approximately 
130 million tourists took a day tour. Given its many attractions and 
complex transport system, Chengdu makes itinerary planning extremely 
challenging. Fig. 6 presents a map of Chengdu City along with the dis
tribution of its 48 chief attractions (represented as black nodes).  

(1) Basic information on the attractions 

Among Chengdu’s numerous attractions, 48 major attractions were 
selected for this study based on their popularity and day-tour recom
mendation ranking in a popular online travel agent (OTA, e.g., Ctrip and 
Alitrip). Fig. 6 shows the locations of the 48 attractions, and Table 2 
(columns 1–4) shows their serial numbers, names, and time windows. At 

Fig. 4. Improved PSO.  

Fig. 5. Hybrid evolution procedure.  

W. Zheng et al.                                                                                                                                                                                                                                  



Tourism Management 81 (2020) 104162

8

each attraction, the time spent by previous tourists (ti) profoundly im
pacts the IRS. Table 2 (column 4) presents data on ti according to the 
online reviews shared in the OTA by previous tourists.  

(2) Travel times between vertices 

The main transport modes used by tourists in the main urban area of 
Chengdu include taxis, the subway, buses, and shared bicycles. Different 
transport mode choices between attractions result in different travel 
times. Such travel time is a TDSV, and it depends on the in-between 
distance and traffic timeslots. For the first quarter of 2019, the 
Chengdu traffic congestion delay index published by Amap, a popular 
navigation mobile app similar to Google Map, shows that a workday can 
be divided into six timeslots, whereas a weekend day has four timeslots. 
Table 3 lists the detailed timeslots. 

Determining the distribution functions of travel times between 
vertices for different transport modes requires considerable data on 
historical travel times of each transport mode in each timeslot. To this 
end, data were collected through Amap, which can accurately estimate 
the travel times for different transport modes in real-time. Specifically, 
in each timeslot, we input the names of any two vertices in Amap, select 
one of the traffic modes, and record the corresponding travel time from 

the Amap outputs. The MATLAB distribution-fitting tool is used for 
probability density functions. The distribution functions for travel times 
between vertices are determined for each transport mode in each 
timeslot. Afterward, the Akaike information criterion (AIC) is utilized to 
evaluate each distribution’s goodness-of-fit and thereby show which is 
the best. The smaller AIC value, the better the data distribution fit (Xia, 
Zeephongsekul, & Packer, 2011). 

The results are illustrated using the travel time via taxi between 
Wangjiang Tower Park (a23) and Temple of Marquis Wu (a2) for TQ5 
(t1

5ðv23;v2Þ) on a weekday. We collected the taxi time between a23 and a2 
in TQ5 for ten consecutive working days. To improve the efficiency of 
data collection, we randomly chose five time points in TQ5 
[16:00–19:00] in a day. Thus, fifty historical data of t1

5ðv23; v2Þ were 
collected to fit the probability density functions for t1

5ðv23; v2Þ. All 
possible distributions in MATLAB, denoted by corresponding probability 
density functions, were explored, and the best five are shown in Fig. 7 
and Table 4. The best distribution for t15ðv23; v2Þ is that of Weibull, which 
shows the lowest AIC value (Table 4, column 2). Using the same pro
cedure obtained the other five timeslots’ best distribution functions. 
Their probability density functions and corresponding parameters are 
given in Fig. 8 and Table 5. Similarly, for each timeslot, the probability 
density functions were determined for travel times between vertices.  

(3) Basic tourist information 

Tourist data were collected at Chengdu Airport (vCA), Chengdu 
Railway Station (vRS), and Chengdu East Railway Station (vERS) to retain 
the sample representativeness. The researchers stood near the exits of 
the railway stations or the airport and invited the first passenger they 
came across to participate in the survey. If a passenger refused, the re
searchers went on to ask the next one until they found a willing 
participant. The purpose of the passengers’ visit to Chengdu was 
determined through a simple oral interview, and only those passengers 
who intend to travel within Chengdu were invited to participate in 
further interviews. Images of the 48 attractions and relevant information 
were shown to respondents. Subsequently, respondents’ starting and 
ending tour locations and times, “must-visit” and “must-avoid” sites, and 
preference values for each attraction based on 0 to 1 (1 indicates a high 
interest for an attraction; 0, no interest in it) were reported. The re
spondents were likewise asked to rank their attitude toward risk on a 
scale from 0 to 1 (with 0 indicating complete risk-aversion; 1, high 
preference for risk). In addition, the respondents also recorded their 
specific requirements for transport modes: some tourists specified all or 
a few of the transport modes for their trip, whereas other tourists were 
flexible with the transport modes. For example, Tourist 15 in Table 6 
required using taxis throughout her trip, Tourist 20 preferred to walk 
from Sichuan University Campus (a4) to Wangjiang Tower Park (a23) 
along Funan River, while Tourist 1 was flexible with the transport 
modes. Of the participants, 21 were male and 29 were female. Collected 
responses were 23 were at vCA, 12 at vRS, and 15 at vERS. The afore
mentioned data gathered from 50 tourists are provided in Table 6. 

5.2. Algorithm parameters 

Optimizing tour routes is considerably influenced by P, G, learning 
factors (σ1 and σ2), and scale factor (Fd). A small P increases the possi
bility of entrapment in the local optimum, but a size too large may result 
in low computational efficiency. Typically, G relies on the convergent 
situation. A critical parameter that considerably impacts the DEA 
evolutionary performance is Fd. Its best values range from 0.1 to 0.3 
(Pal, Saha, & Bandyopadhyay, 2018) to achieve a balance between 
performance and efficiency. As for PSO learning factors, various MOP 
studies show that values between 0.5 and 0.9 are the best for σ1 and σ2 
(Garcia-Gonzalo & Fern�andez-Martínez, 2012). On the basis of the 
preceding analysis and real-time scenario in Chengdu, our algorithm 

Fig. 6. Chengdu City map.  

Table 2 
Basic information on attractions in Chengdu.  

No. Name District Time window tj (min) 

a1 Jinli Street Wuhou [00:00–24:00] 1–3 h 
a2 Temple of Marquis Wu Wuhou [07:30–21:00] 1–3 h 
….. ….. ….. ….. ….. 
a48 Three weirs Pidu [09:00–21:00] 3–5 h  

Table 3 
Chengdu City timeslots.  

Workday Weekend 

No. Timeslot Traffic 
congestion 
delay index 

No. Timeslot Traffic 
congestion 
delay index 

TQ1 [23:00–05:00] λ2 [0, 1] TQ1 [23:00–08:00] λ2 [0, 1] 
TQ2 [05:00–07:30] λ2 (1, 1.5] TQ2 [08:00–16:00] λ2 (1, 1.5] 
TQ3 [07:30–11:00] λ2 (1.5, 2] TQ3 [16:00–20:00] λ2 (1.5, 2] 
TQ4 [11:00–16:00] λ2 (1, 1.5] TQ4 [20:00–23:00] λ2 (1, 1.5] 
TQ5 [16:00–19:00] λ2 (1.5, 2]    
TQ6 [19:00–23:00] λ2 [0, 1]     
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parameters are set as follows in Table 7. 

5.3. Performance evaluation 

Various algorithms commonly used in MOPs serve as baselines for 
comparison with our approach, such as ant colony optimization (M- 
ACO), DEA (M-DE), genetic-based algorithm (NSGA-II), particle swarm 

optimization (M-PSO), and the heuristic approach (NSACDE) proposed 
by Zheng and Liao (2019). The performance of different methods used in 
MOPs was evaluated by the inverted generational distance (IGD), which 
is widely applied (Li & Zhang, 2009) to assess the gap between the true 
PF and the PF* obtained by the methods following Eq. (5.1). A smaller 
IGD value indicates better method performance. A detailed description 
of IGD is presented by Zheng and Liao (2019). In this evaluation, random 
errors are reduced by repeating the process 30 times for each tourist and 
averaging the resultant IGD values. The average IGD values obtained 
from the six methods are presented in Fig. 9. 

IGDðPF�;PFTureÞ¼

P

PR2PF*
dðPR;PFTureÞ

jPF�j
(5.1) 

The performance of the five methods was further analyzed through 
paired sample t-tests to identify which method obtained a smaller IGD. 
Table 8 presents the mean (M) and standard deviations (SD) of the IGD 
obtained using the five algorithms, and Table 9 shows the paired sample 

Fig. 7. Probability density functions for t1
5ðv23; v2Þ

Table 4 
AIC goodness-of-fit test for each probability density function (t1

5ðv23;v2Þ).  

Distribution AIC Number of Parameters Parameters 

Normal 6.577 2 (30.94, 6.29) 
Nakagami 6.606 2 (6.05, 996.26) 
Weibull 6.554 2 (33.44, 5.75) 
Log-logistic 6.676 2 (3.43, 0.12) 
Gamma 6.665 2 (22.27, 1.39)  

Fig. 8. Probability density functions for t1
5ðv23; v2Þ
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t-test results. The first pair (NSHA–NSGA-II) shows a gap mean of 
� 0.639, and the IGD obtained using NSHA was significantly smaller (M 
¼ 2.212, SD ¼ 0.338) than that obtained using NSGA-II (M ¼ 2.850, SD 
¼ 0.515) (t(50) ¼ � 18.181, p < 0.05). Similar results were obtained for 
the paired sample t-test of the second (NSHA–M-PSO), third (NSHA–M- 
ACO), and fourth (NSHA–M-DE) pairs, indicating that the proposed 
approach performed significantly better than M-PSO, M-ACO, and M- 
DE. However, the paired sample t-test results for the fifth pair 
(NSHA–NSACDE) showed no significant difference (t(50) ¼ � 1.235, p ¼
0.223 > 0.05). 

This final result is consistent with the statements in Section 4.3, 
wherein the comparative analysis between NSACDE and NSHA was 
conducted. Specifically, NSACDE involves ACO that exposes slow 
convergence, leading to the algorithm inefficiency in dealing with a 
TTDP-TMC involving multiple TDSVs (Dorigo & Blum, 2005). Our NSHA 
combining DEA and an improved PSO is ideally situated for the problem 
due to its higher search efficiency (Bonyadi & Michalewicz, 2017; Poli, 
2008). Therefore, the difference in running time between NSHA and 
NSACDE is further evaluated. The running time gap mean was � 500.48, 
and the test results revealed that the running time of NSHA was 
considerably smaller (M ¼ 608.00, SD ¼ 3.88) than that of NSACDE (M 
¼ 1108.49, SD ¼ 5.97) (t(50) ¼ � 441.68, p < 0.05). From this 
perspective, although NSHA and NSACDE achieved similar IGD, our 
NSHA approach was clearly better in terms of computational efficiency. 

5.4. Discussion 

In Section 5.3, the presented results clearly indicate that our pro
posed approach realizes the balance between utility and risk better than 
the current algorithms, and shows excellent performance in computa
tional efficiency. Moreover, with our approach, more multifarious route 
choices can be designed with the adoption of the Pareto optimality and 
more sensible and customized routes with the TTDP in a time-dependent 
stochastic environment that considers spatial-temporal route structure, 
transport mode choice, and tourist attitude toward risk.  

(1) More multifarious route choices 

Table 5 
Best probability density functions for each timeslot (t1

5ðv23; v2Þ).  

No. Timeslot Best distribution Parameters 

TQ1 [23:00–05:00] Gamma (231.46, 0.07) 
TQ2 [05:00–07:30] Log-logistic (3.03, 0.04) 
TQ3 [07:30–11:00] Gamma (36.44, 0.87) 
TQ4 [11:00–16:00] Normal (20.20, 2.45) 
TQ5 [16:00–19:00] Weibull (33.44, 5.75) 
TQ6 [19:00–23:00] Inverse gaussian (18.12, 1243.88)  

Table 6 
Basic tourist information.  

Tourist Gender Preference Value 
List 

Time 
Budget 

Must-visit 
Attractions 

Attitude 
toward risk 

1 F [0.94, 0.96, …, 
0.18, 0.35] 

12 h 4 0.8 

2 M [0.96, 0.90, …, 
0.77, 0.06] 

9 h None 0.1 

… … … … … … 
50 F [0.85, 0.72, …, 

0.16, 0.75] 
8.5 h 6 0.2  

Table 7 
Algorithm parameters.  

Parameter P G Global search Local search 

Improve PSO DEA Improve PSO DEA 

σ1-G σ2-G Fd-G σ1-G σ2-G Fd-G 

Value 60 200 0.9 0.5 0.1 0.5 0.9 0.3  

Fig. 9. Average IGD for each tourist (NSHA, NSGA-II, M-PSO, M-ACO, M-DE, and NSACDE).  

Table 8 
Paired sample statistics.   

Mean N Std. Deviation Std. Error Mean 

Pair 1 NSHA 2.212 50 0.338 0.048 
NSGA-II 2.850 50 0.515 0.073 

Pair 2 NSHA 2.212 50 0.338 0.048 
M-PSO 3.013 50 0.541 0.077 

Pair 3 NSHA 2.212 50 0.338 0.048 
M-ACO 2.507 50 0.398 0.056 

Pair 4 NSHA 2.212 50 0.338 0.048 
M-DE 2.690 50 0.470 0.066 

Pair 5 NSHA 2.212 50 0.338 0.048 
NSACDE 2.230 50 0.323 0.046  
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Our approach provides Pareto routes that can meet the diverse 
preferences of tourists. The first tourist from Table 6 is taken as an 
example. For this tourist, the allocated time was 12 h (07:00 to 19:00), 
and his attitude toward risk is 0.8. A total of 60 routes were designed for 
this tourist and plotted in Fig. 10 to show the relationship between 
utility (vertical ordinate) and risk (horizontal ordinate). Measured in 
probability terms, risk reflects the conservative estimate of completing 
the trip within the allocated time. A higher risk value indicates a smaller 
probability of completing the trip within the budget time, and vice versa 
(Lau et al., 2012). Tourists can then select one of the routes based on the 
above information. For example, if our tourist focuses on utility, then he 
will likely choose the first route that has a high utility of 88.41 and a risk 
value of 0.94. For the tourist to avoid risk as much as possible may 
therefore prefer the last route, which has a low utility of 64.17 and risk 
value of 0.45. Apart from these two extremes, 58 other routes were 
provided to achieve a trade-off between utility and risk.  

(2) More personalized tour routes 

A set of routes that can meet diverse choices of tourists can be pro
vided using our approach. In addition, a more personalized set of routes 
can be generated according to the tourists’ risk attitude. A risk-seeking 
tourist may select a route with greater utility but a higher probability 
of failure to complete a trip within the allocated time, compared with a 
risk-averse tourist who may opt for a leisurely pace with lower utility 
(Lau et al., 2012). Our approach thus involves tourists’ attitudes toward 
risk on top of the personal preferences explored in other studies. 

The capability of offering more tailored tour routes can be validated 
again by selecting Tourist 1 from Table 6 as an example. His actual 

attitude toward risk is 0.8 (risk-seeking), but was adjusted to 0.2 (risk- 
averse) and 0.5 (risk-moderate) for comparison. In Fig. 11, the routes 
shown are designed for the tourist as risk-seeking (blue scatter dots), 
risk-moderate (green scatter dots), and risk-averse (red scatter dots). 
The Pareto routes are concentrated as follows for risk-seeking tourists in 
high-risk and high-utility regions (U¼ 84.15, R ¼ 0.79); for risk-averse 
tourists in low-risk and low-utility regions (U¼ 53.30, R ¼ 0.22); and 
for risk-moderate tourists in a compromise between the two extremes 
(U¼ 64.45, R ¼ 0.47).  

(3) More sensible tour routes 

The multimodal nature of transport systems is rarely considered in 
designing routes customized for city tourists. Personalized city day tour 
routes without such considerations are infeasible or suboptimal. A 
comparative analysis was conducted to explore this issue. Three contrast 
scenarios were set up for an entire trip: (1) only the taxi is chosen 
(denoted as “Taxi only”); (2) only the subway is chosen (denoted as 
“Subway only”); and (3) only the bus is chosen (denoted as “Bus only”). 
Information from Tourist 1 in Table 6 is taken as an example. 

The routes designed for Tourist 1 using our approach are shown in 
Fig. 12, which considers multimodal transportation transfer (blue scat
ter dots). The red, yellow, and brown scatter dots denote routes for the 
first scenario (Taxi only), second scenario (Subway only), and last sce
nario (Bus only), respectively. Table 10 lists the results of the compar
ative analysis of the four scenarios, including the maximum (minimum, 
average) utility and maximum (minimum, average) risk values of the 
Pareto solutions. As shown in Fig. 12 and Table 10, our method can 
achieve higher utilities than other scenarios with the same risk, and our 

Table 9 
Paired sample test.   

Paired Differences T df Sig. (2-tailed) 

Mean Std. Deviation Std. Error Mean 95% Confidence Interval of the Difference 

Lower Upper 

Pair 1 NSHA–NSGA-II � 0.639 0.248 0.035 � 0.709 � 0.568 � 18.181 49 0.000*** 
Pair 2 NSHA–M-PSO � 0.802 0.266 0.038 � 0.877 � 0.726 � 21.302 49 0.000*** 
Pair 3 NSHA–M-ACO � 0.295 0.128 0.018 � 0.331 � 0.258 � 16.246 49 0.000*** 
Pair 4 NSHA–M-DE � 0.479 0.202 0.029 � 0.536 � 0.421 � 16.740 49 0.000*** 
Pair 5 NSHA–NSACDE � 0.018 0.103 0.015 � 0.047 0.011 � 1.235 49 0.223 

*p < 0.05; **p < 0.01; ***p < 0.001. 

Fig. 10. Routes with relationships between utility and risk (Tourist 1).  
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approach is less risky than other scenarios with the same utilities. 

6. Conclusions and future research 

The transport system in an urban destination is complex, navigating 
through it is a big challenge for a tourist, and designing sensible and 
personalized route recommendations is thus critical for enhancing 
tourist experience and satisfaction. This study considers transport mode 

choices and spatial-temporal structures in designing personalized tours. 
Compared with the general TTDP, our proposed TTDP-TMC is much 
more advanced due to its optimization of spatial-temporal routes and 
transport mode choice, and the aim is to gain an advantageous trade-off 
between utility and risk in a time-dependent stochastic environment. 
Moreover, our model overcomes the problem of multiple conflicting 
objectives by adopting the Pareto optimality Definition and designing a 
NSHA with improved PSO and DEA. The illustration case study confirms 
the superiority of our proposed approach over existing algorithms. 
Compared with the baseline methods, our model provides more sensible, 
multifarious, and customized routes for city tourists. Our NSHA could 
draw considerable interest from the tourism sector practitioners, 
because of the growing demand for customized experiences in today’s 
tourism market. 

This study contributes to tourism research in both methodological 
and practical fronts. Methodologically, we proposed an effective 
approach to personalize routes for city tourists. This approach takes into 

Fig. 11. Routes for tourists with different attitudes toward risk.  

Fig. 12. Routes for tourists with different transportation modes.  

Table 10 
Comparative analysis of the four scenarios.   

Mean- 
Utility 

Max- 
Utility 

Min- 
Utility 

Mean- 
Risk 

Max- 
Risk 

Min- 
Risk 

NSHA 84.15 88.41 64.17 0.79 0.94 0.45 
Taxi 72.62 87.40 42.35 0.67 0.94 0.13 
Subway 68.34 77.07 48.88 0.67 0.93 0.13 
Bus 60.80 71.45 42.09 0.67 0.89 0.14  
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account multiple objectives based on Pareto optimality. Solutions are 
coded using a triple-layer, variable-length asymmetric chromosome, and 
they are optimized with discrete and continuous variables combining 
improved PSO and DEA. Finally, a random simulation-based method is 
proposed to deal with TDSVs, and a hybrid evolution structure is 
designed to improve evolutionary efficiency. 

Practically, utilizing the latest machine learning and artificial intel
ligence technologies to provide tourists with personalized tour recom
mendations will greatly enhance their tourism experience, satisfaction 
and loyalty, which consequently lead to better business performance for 
the tourism organization (Piccoli, Lui, & Grün, 2017). The approach 
proposed in this study further improves the trip design function for the 
smart tourism recommendation systems, which aims to help tourists to 
navigate the transport system efficiently. City destination marketing and 
management organizations could integrate the methodologies and al
gorithms proposed in this study to upgrade their tour recommendation 
systems as part of their e-business or digital transformation strategy to 
enhance the destinations’ services, thereby helping them gain a 
competitive edge in the market (Edwards, Griffin, & Hayllar, 2008). 
Independent tourists can utilize the recommendation system designed 
using our approach when planning their tour routes in the urban 
context. This ideal scenario promises enhanced travel experiences. 

Further research could tackle the problem of designing personalized 
itineraries in a multi-day tour context with consideration of both hotel 
selection and transport mode choice. Many city tourism attractions can 
be abstracted as vertices or arcs (e.g., coastline, greenway, river, and 
street). As the tourists’ utility is associated both arcs and vertices, future 
researchers could combine OP and arc routing problems with profits to 
come up with tour itineraries for urban tourists. Finally, it would be 
valuable and promising to design a highly robust travel route recom
mendation system that can adapt to the dynamic adjustment of the 
tourists who may want change routes away from the recommended 
options during their trips. 
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